منابع مشابه
Toric Rigid Spaces
This paper gives a method to construct rigid spaces, which is similar to the method used to construct toric schemes.
متن کاملIrreducible Components of Rigid Spaces
Cet article donne les fondements de la théorie globale des composantes irréductibles d’espaces analytiques rigides sur un corps complet k. Nous prouvons l’excellence d’anneaux locaux sur les espaces rigides sur k. De là, nous prouvons les théorèmes standards d’existence et nous montrons la compatibilité avec les notions des composantes irréductibles pour les schémas et les schémas formels. Le c...
متن کاملMoishezon Spaces in Rigid Geometry
We prove that all proper rigid-analytic spaces with “enough” algebraically independent meromorphic functions are algebraic (in the sense of proper algebraic spaces). This is a non-archimedean analogue of a result of Artin over C.
متن کاملModular Curves and Rigid-analytic Spaces
1.1. Motivation. In the original work of Katz on p-adic modular forms [Kz], a key insight is the use of Lubin’s work on canonical subgroups in 1-parameter formal groups to define a relative theory of a “canonical subgroup” in p-adic families of elliptic curves whose reduction types are good but not too supersingular. The theory initiated by Katz has been refined in various directions (as in [AG...
متن کاملEtale Cohomology of Rigid Analytic Spaces
The paper serves as an introduction to etale cohomology of rigid analytic spaces. A number of basic results are proved, e.g. concerning cohomological dimension, base change, invariance for change of base elds, the homotopy axiom and comparison for etale cohomology of algebraic varieties. The methods are those of classical rigid analytic geometry and along the way a number of known results on ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1989
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-133-1-59-65